
Black Hat 2006
Reinventing TCP/IP in Windows Vista
with the NetIO stack

Abolade Gbadegesin
Architect

Contact: aboladeg at microsoft dot com

August 3, 2006 2

Getting Started

About me
Responsible for architecture of network transports in
Windows
11 years working on Windows networking
6 years redesigning the Windows networking stack

What this talk will cover
Guiding principles
NetIO architecture
Integrated and extensible network security
Performance and scalability
Writing networked applications

August 3, 2006 3

Reinventing TCP/IP
What do customers want?

Rich, clean APIsRich, clean APIs
Simple diagnosticsSimple diagnostics

DevelopersDevelopers

End usersEnd users

It just worksIt just works
Great performanceGreat performance

Device supportDevice support
ScalabilityScalability

PartnersPartners

AdministratorsAdministrators

Low TCOLow TCO
SecuritySecurity

Simple
Resilient
Flexible

Diagnosable

August 3, 2006 4

Reinventing TCP/IP
Guiding Principles

• Define the state of the art in networking
• Design components to be extensible and

diagnosable
• Raise the bar on security and resilience
• Enable pervasively flexible and self-

tuning performance

End usersEnd users

It just worksIt just works
Great performanceGreat performance

Rich, clean APIsRich, clean APIs
Simple diagnosticsSimple diagnostics

DevelopersDevelopers

Device supportDevice support
ScalabilityScalability

PartnersPartners

AdministratorsAdministrators

Low TCOLow TCO
SecuritySecurity

August 3, 2006 5

History

• Denial-of-service exploits
– Early attacks exploited

spoofing, protocol design
and product vulnerabilities

– Current attacks use
stateful, non-spoofed
sessions from 0wned
machines

• Penetration exploits
– Code-execution

vulnerabilities more rare in
low layers like TCP

– Attacks moving farther up
the application stack!

August 3, 2006 6

Timeline

1999

2000

2001

2002

2003

Initial architecture
and design decisions

Project checkins
begin

BVT framework
running

Early 2001
1st milestone

UDP sockets over IPv6

IPv6 neighbor discovery
Outgoing TCP connection

setup over IPv6

Incoming TCP connection
setup over IPv6

Mid 2002
2nd milestone

1st TCP data exchange
Early connection offload work
IPv4 and IPv6 fragmentation

and reassembly

Dual-family sockets
Multicast

Early performance work

Late 2003
3rd milestone

NetIO TCP/IP in winmain builds

Meet the Internet Protocols teamMeet the Internet Protocols team

August 3, 2006 8

NetIO architectural framework
Goals and design decisions

Windows NT subsystems

“NetIO”

NDIS 6.0

Multi-packet
send and

receive

Multiprocessor
scaling

Unified
configuration
mechanisms

Extensive
diagnostic

support

Clean
extensibility
interfaces

Simplified
kernel-mode
support

Unified IPv4 and IPv6

Native offload capability

Advanced TCP algorithms

Consistent, compatible API improvements

August 3, 2006 9

NetIO architectural framework
A whirlwind debugger-guided tour

• Putting the components together
– modules, binding, configuration
– transport and network protocols
– diagnostics, tracing

• Maintaining runtime state
– compartments, interfaces, addresses, routes
– endpoints, ports, listeners, connections

• Handling I/O
– requests, buffers, queuing
– paths, neighbors
– inspection, injection, callouts

August 3, 2006 10

Designing for extensible security
One question, though…

What does all this change mean for
network security and network policy

solutions on Windows?

August 3, 2006 11

Designing for extensible security
The problem: how do you infer this…

endpoint listener

connection

socket()

listen()

connect()

accept()[*]

shutdown()

closesocket()

August 3, 2006 12

Designing for extensible security
…from this?

?

socket()

listen()

connect()

accept()[*]

shutdown()

closesocket()

SYN SYN
ACK

FIN RST ACK

August 3, 2006 13

Designing for extensible security
Three conclusions

• Security-focused components need
visibility into the operation of the
things that they secure

• Policy-enforcing components need
direct control over the things that
policy talks about

• Security policy must be decoupled
from components so it can evolve at
the pace of security threats

August 3, 2006 14

Designing for extensible security
The NetIO approach

Allow external components to cleanly observe and
influence internal logic

August 3, 2006 15

Designing for extensible security
Understanding the Windows Filtering Platform

TCP UDP Raw IP

IPv4 IPv6

Windows Sockets

RPC

Neighbor Discovery

This is the networking stack…

August 3, 2006 16

Designing for extensible security
Understanding the Windows Filtering Platform

…and this is how WFP fits in.

August 3, 2006 17

Designing for extensible security
What’s in the picture?

• Core stack (TCP, UDP, IPv4, IPv6)
• Built-in policy-related components

–Application Layer Enforcement
–Stream inspection
– IPsec

• Core filtering engine
–User-mode and kernel-mode logic
–Filter database

• Filtering callouts

August 3, 2006 18

Designing for extensible security
What layers are defined for callouts?

• RPC, IKE
• Socket operations (listen, accept, connect,

port assignment)
• In-order TCP data streams
• Inbound & outbound TCP/UDP messages
• Inbound, outbound & forwarded IP packets
• ICMP messages
• …and more to come

August 3, 2006 19

Designing for extensible security
What does WFP enable?

• Extensibility
• Transparency to users and

applications
• Tight integration, high performance,

scalability

August 3, 2006 20

Performance and scalability

Core TCP performance
Handling intensive workloads

Core TCP performance
Flow control 101

Receiver advertises window

Sender transmits up to window size

Receiver has to acknowledge something
before sender can transmit further

Ideal window: bandwidth * delay

Bandwidth

Delay

Receive window
capacity

Receiver window capacity

Core TCP performance
Pipes & flow control

Pipe
characteristics

100 Mbps with 10 ms delay
5Mbps with 200ms delay

1Gbps with 50ms delay

Ideal
window
128KB
128KB
~6MB

Capacity utilized
by default window

~12%
~12%
~1.2%

Core TCP performance
Flow control on various paths

Receiver enables window scaling by default

Continuously estimates pipe capacity and monitors
application reads

Auto-tunes receive window advertisements to
ensure the receive window doesn’t limit throughput

up to 4000% improvement over XP in throughput
for HTTP

up to 4600% improvement over XP in throughput
for file transfers with SMB 2.0 pipelining

Core TCP performance
TCP receive window auto-tuning

Command line:
netsh interface tcp set global autotuninglevel

Core TCP performance
Controlling auto-tuning

Group Policy and UI
Gpedit.msc under advanced
policy-based QoS settings

Core TCP performance
Controlling auto-tuning

August 3, 2006 27

Performance and scalability

Core TCP performance
Handling intensive workloads

Speed
1 Gbps

10 Gbps
100 Gbps

Budget
16 _secs
1.6 _secs
0.16 _secs

Minimizing per-packet processing
Multi-packet transmission and reception
Offload checksum computation and verification
Giant Send Offload (GSO)

but driving a connection at 100 Gbps requires
more….

Handling intensive workloads
Tackling bandwidth scalability

Neighbor Discovery

1. Initiate offload attempt

IPv4/IPv6

5. Accept offload

Synchronizes state machines
between OS and hardware

TCP
TCP connection

IP path state

Link-layer state

TCP offload manager

IP offload manager

ND offload manager

2. Cache TCP state

3. Cache IP state

4. Cache ND state

6. Update cached state

Handling intensive workloads
TCP connection offload

Transparently and gracefully transitions state
back and forth between OS and hardware

greater than 50% reduction in CPU utilization
using 1Gbps Ethernet for HTTP workloads

OS continuously monitors connection activity
and selects suitable candidates for offload

Defines offload state composably to simplify
offload of other protocol stacks (e.g. SSL)

Handling intensive workloads
TCP connection offload

Path characteristics
1 Gbps at 500ms
10Gbps at 500ms

100Gbps at 500ms

Buffer size
~64MB
~512MB
~6GB

Packet loss probability grows steadily
Ramp-up after loss takes much longer (10
minutes on 1Gbps/100ms path)

Packets in flight
~32 thousand
~256 thousand

~3 million

Handling intensive workloads
High latency throughput

Slow-start phase
Increase congestion window by 1 packet for
each cumulative acknowledgment

Congestion avoidance phase
Increase congestion window by 1 packet for
each round trip

Congestion response
On loss, drop window to 1 packet and set slow-
start threshold to _ outstanding data

Handling intensive workloads
Classic TCP congestion control 101

Congestion avoidance
Detect congestion by sensing increased delay
Assumes sufficient network buffering to
produce measurable delay variations

Congestion response
Avoid packet loss by adjusting congestion
window in response to delay

Handling intensive workloads
Delay-based TCP congestion control 101

Loss window Delay window
Congestion window

Combine loss and delay
windows for faster ramp-

up and recovery

Handling intensive workloads
Reducing ramp-up time with Compound TCP

nearly 50% reduction in transfer time
over 1Gbps path with 30ms RTT

Tries to avoid losses when running
alone and recover quickly from losses
caused by others

Designed for fairness to connections
using loss-based congestion control

Handling intensive workloads
Compound TCP

Writing Networked Applications

Detecting Internet connectivity
Optimizing connection establishment
Port management

Wireless Hot Spot

Windows Vista PC

Wired Internet

Internet Site

1. Send query for1. Send query for
known DNS nameknown DNS name

2. Invalid response,2. Invalid response,
not Internetnot Internet

3. Send request for known URL3. Send request for known URL4. Correct response,4. Correct response,
hence Internethence Internet

Writing networked applications
Detecting Internet connectivity

characterizes global Internet connectivity
for both IPv4 and IPv6

Handles DNS spoofing by wireless
hotspots and detects transparent HTTP
proxies

Scales by leveraging DNS and HTTP
caching

Queries issued through Network
Location Awareness API, handled by
NLA 2.0 service

Writing networked applications
Detecting Internet connectivity

Wireless Hot Spot

Windows Vista PC

Wired Internet

Internet Site

Wired addressesWired addresses
IPv4 site-localIPv4 site-local
IPv6 link-localIPv6 link-local
IPv6 globalIPv6 global

Wireless addressesWireless addresses
IPv4 site-localIPv4 site-local
IPv6 link-localIPv6 link-local

Server addressesServer addresses
IPv4 globalIPv4 global
IPv6 globalIPv6 global

Writing networked applications
Optimizing connection establishment

designed to optimize connection success
rate across IPv4 and IPv6

Currently tries one combination at a time,
will make parallel attempts in future
Address sorting functionality available
on its own via socket I/O control

Prioritizes and sorts multiple combinations
of source and destination addresses

Writing networked applications
WSAConnectByName and WSAConnectByList

Well-known portsWell-known ports

11……

……10241024

10251025……

……50005000 ……6553465534

50015001……

Ephemeral portsEphemeral ports Other portsOther ports

Well-known portsWell-known ports

11……

……10231023

10241024……

……4915149151 ……6553465534

4915249152……

Registered portsRegistered ports Ephemeral portsEphemeral ports

more port numbers for dynamic assignment
fewer collisions on registered port numbers

Writing networked applications
Basic port management

May I have 100 ports?May I have 100 ports?

OK, start at …

Writing networked applications
Reserving ports at runtime for applications

May I have port 520?May I have port 520?

OK, here is a
reservation token …

Writing networked applications
Reserving ports statically for services

Reserve port numbers at runtime and
statically
Optionally randomizes port assignments
for increased security

Supports IANA compliance for registered
and ephemeral ports

Writing networked applications
Port management

August 3, 2006 45

Call to Action

We’re building the foundation, and we want
your help!

• Ensure your tools & products light up with
NetIO
– Test devices for compatibility with TCP window

scaling
– Achieve great TCP performance by supporting

pipelining and multithreading
– Extend your reach by supporting IPv4 and IPv6
– Leverage new features, e.g. port reservation

and randomization

August 3, 2006 46

Call to Action (2)

We’re building the foundation, and we want
your help!

• Innovate on NetIO to enable new scenarios
– Plug into WFP to enforce your own security

policies
– Use secure sockets for authentication &

authorization
– Leverage kernel sockets & kernel IP helper API

in drivers

August 3, 2006 47

Resources

Email
TCP/IP: tcpipfb@microsoft.com
WFP: wfp@microsoft.com

Windows Vista on MSDN and TechNet
http://msdn.microsoft.com/windowsvista/
http://windowssdk.msdn.microsoft.com/
http://www.microsoft.com/technet/windowsvista

/network/default.mspx

The Cable Guy
http://www.microsoft.com/technet/community/c

olumns/cableguy/default.mspx

August 3, 2006 48

Still to Come!

Tony ChorCase Study: The Security Development
Lifecycle and Internet Explorer 7

16:45 – 18:30

Adrian MarinescuWindows Vista Heap Management
Enhancements – Security, Reliability
and Performance

15:15 – 16:30

Noel Anderson &
Taroon Mandhana

WiFi in Windows Vista: A Peek Inside
the Kimono

13:45 – 15:00

August 3, 2006 4949

secure@microsoft.com

This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

